On the Takens-Bogdanov Bifurcation in the Chua’s Equation

نویسندگان

  • Antonio ALGABA
  • Emilio FREIRE
  • Estanislao GAMERO
  • Alejandro J. RODRÍGUEZ-LUIS
چکیده

The analysis of the Takens-Bogdanov bifurcation of the equilibrium at the origin in the Chua’s equation with a cubic nonlinearity is carried out. The local analysis provides, in first approximation, different bifurcation sets, where the presence of several dynamical behaviours (including periodic, homoclinic and heteroclinic orbits) is predicted. The local results are used as a guide to apply the adequate numerical methods to obtain a global understanding of the bifurcation sets. The study of the normal form of the Takens-Bogdanov bifurcation shows the presence of a degenerate (codimension-three) situation, which is analyzed in both homoclinic and heteroclinic cases. key words: bifurcations, oscillations, Chua circuit

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Hopf-Pitchfork bifurcation in the Chua's equation

We study some periodic and quasiperiodic behaviors exhibited by the Chua’s equation with a cubic nonlinearity, near a Hopf–pitchfork bifurcation. We classify the types of this bifurcation in the nondegenerate cases, and point out the presence of a degenerate Hopf–pitchfork bifurcation. In this degenerate situation, analytical and numerical study shows a diversity of bifurcations of periodic orb...

متن کامل

Some Results on Chua's equation Near a Triple-Zero Linear Degeneracy

In this work we study a wide class of symmetric control systems that has the Chua’s circuit as a prototype. Namely, we compute normal forms for Takens–Bogdanov and triple-zero bifurcations in a class of symmetric control systems and determine the local bifurcations that emerge from such degeneracies. The analytical results are used as a first guide to detect numerically several codimension-thre...

متن کامل

Takens-Bogdanov bifurcations of periodic orbits and Arnold's Tongues in a Three-Dimensional Electronic Model

In this paper we study Arnold’s tongues in a Z2-symmetric electronic circuit. They appear in a rich bifurcation scenario organized by a degenerate codimension-three Hopf–pitchfork bifurcation. On the one hand, we describe the transition open-to-closed of the resonance zones, finding two different types of Takens–Bogdanov bifurcations (quadratic and cubic homoclinic-type) of periodic orbits. The...

متن کامل

Improved Homoclinic Predictor for Bogdanov-Takens Bifurcation

An improved homoclinic predictor at a generic codim 2 Bogdanov-Takens (BT) bifucation is derived. We use the classical “blow-up” technique to reduce the canonical smooth normal form near a generic BT bifurcation to a perturbed Hamiltonian system. With a simple perturbation method, we derive explicit firstand second-order corrections of the unperturbed homoclinic orbit and parameter value. To ob...

متن کامل

Bogdanov-takens Singularity of a Neural Network Model with Delay

In this article, we study Bogdanov-Takens (BT) singularity of a tree-neuron model with time delay. By using the frameworks of CampbellYuan [2] and Faria-Magalhães [4, 5], the normal form on the center manifold is derived for this singularity and hence the corresponding bifurcation diagrams such as Hopf, double limit cycle, and triple limit cycle bifurcations are obtained. Examples are given to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999